3.7.47 \(\int \frac {x^3}{(1-x^3)^{4/3} (1+x^3)} \, dx\) [647]

Optimal. Leaf size=106 \[ \frac {x}{2 \sqrt [3]{1-x^3}}+\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+\frac {\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac {\log \left (-\sqrt [3]{2} x-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}} \]

[Out]

1/2*x/(-x^3+1)^(1/3)+1/24*ln(x^3+1)*2^(2/3)-1/8*ln(-2^(1/3)*x-(-x^3+1)^(1/3))*2^(2/3)+1/12*arctan(1/3*(1-2*2^(
1/3)*x/(-x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {482, 384} \begin {gather*} \frac {\text {ArcTan}\left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+\frac {x}{2 \sqrt [3]{1-x^3}}+\frac {\log \left (x^3+1\right )}{12 \sqrt [3]{2}}-\frac {\log \left (-\sqrt [3]{1-x^3}-\sqrt [3]{2} x\right )}{4 \sqrt [3]{2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/((1 - x^3)^(4/3)*(1 + x^3)),x]

[Out]

x/(2*(1 - x^3)^(1/3)) + ArcTan[(1 - (2*2^(1/3)*x)/(1 - x^3)^(1/3))/Sqrt[3]]/(2*2^(1/3)*Sqrt[3]) + Log[1 + x^3]
/(12*2^(1/3)) - Log[-(2^(1/3)*x) - (1 - x^3)^(1/3)]/(4*2^(1/3))

Rule 384

Int[1/(((a_) + (b_.)*(x_)^3)^(1/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/c, 3]}, Simp[
ArcTan[(1 + (2*q*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sqrt[3]*c*q), x] + (-Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*c*q
), x] + Simp[Log[c + d*x^3]/(6*c*q), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 482

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx &=\frac {x^4 \, _2F_1\left (\frac {4}{3},\frac {4}{3};\frac {7}{3};\frac {2 x^3}{1+x^3}\right )}{4 \left (1+x^3\right )^{4/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.29, size = 139, normalized size = 1.31 \begin {gather*} \frac {1}{24} \left (\frac {12 x}{\sqrt [3]{1-x^3}}+2\ 2^{2/3} \sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} x}{x-2^{2/3} \sqrt [3]{1-x^3}}\right )-2\ 2^{2/3} \log \left (2 x+2^{2/3} \sqrt [3]{1-x^3}\right )+2^{2/3} \log \left (-2 x^2+2^{2/3} x \sqrt [3]{1-x^3}-\sqrt [3]{2} \left (1-x^3\right )^{2/3}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/((1 - x^3)^(4/3)*(1 + x^3)),x]

[Out]

((12*x)/(1 - x^3)^(1/3) + 2*2^(2/3)*Sqrt[3]*ArcTan[(Sqrt[3]*x)/(x - 2^(2/3)*(1 - x^3)^(1/3))] - 2*2^(2/3)*Log[
2*x + 2^(2/3)*(1 - x^3)^(1/3)] + 2^(2/3)*Log[-2*x^2 + 2^(2/3)*x*(1 - x^3)^(1/3) - 2^(1/3)*(1 - x^3)^(2/3)])/24

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 5.02, size = 627, normalized size = 5.92

method result size
risch \(\text {Expression too large to display}\) \(627\)
trager \(\text {Expression too large to display}\) \(634\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(-x^3+1)^(4/3)/(x^3+1),x,method=_RETURNVERBOSE)

[Out]

1/2*x/(-x^3+1)^(1/3)-1/2*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)*ln(-(-9*RootOf(RootOf(_Z^3-4)^2+
6*_Z*RootOf(_Z^3-4)+36*_Z^2)*RootOf(_Z^3-4)^3*x^3-36*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)^2*Ro
otOf(_Z^3-4)^2*x^3+12*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)*RootOf(_Z^3-4)^2*x+4
*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2*x^2+30*(-x^3+1)^(1/3)*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)*Ro
otOf(_Z^3-4)*x^2+3*RootOf(_Z^3-4)*x^3+12*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)*x^3-2*x*(-x^3+1)
^(2/3)-3*RootOf(_Z^3-4)-12*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2))/(x+1)/(x^2-x+1))-1/12*RootOf(
_Z^3-4)*ln((-3*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)*RootOf(_Z^3-4)^3*x^3-27*RootOf(RootOf(_Z^3
-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)^2*RootOf(_Z^3-4)^2*x^3+6*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf
(_Z^3-4)+36*_Z^2)*RootOf(_Z^3-4)^2*x+2*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2*x^2-3*(-x^3+1)^(1/3)*RootOf(RootOf(_Z^3
-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z^2)*RootOf(_Z^3-4)*x^2-3*RootOf(_Z^3-4)*x^3-27*RootOf(RootOf(_Z^3-4)^2+6*_Z*Roo
tOf(_Z^3-4)+36*_Z^2)*x^3+5*x*(-x^3+1)^(2/3)+RootOf(_Z^3-4)+9*RootOf(RootOf(_Z^3-4)^2+6*_Z*RootOf(_Z^3-4)+36*_Z
^2))/(x+1)/(x^2-x+1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="maxima")

[Out]

integrate(x^3/((x^3 + 1)*(-x^3 + 1)^(4/3)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 318 vs. \(2 (79) = 158\).
time = 7.20, size = 318, normalized size = 3.00 \begin {gather*} -\frac {2 \, \sqrt {6} 2^{\frac {1}{6}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \arctan \left (\frac {2^{\frac {1}{6}} {\left (6 \, \sqrt {6} 2^{\frac {2}{3}} \left (-1\right )^{\frac {2}{3}} {\left (5 \, x^{7} + 4 \, x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} - 12 \, \sqrt {6} \left (-1\right )^{\frac {1}{3}} {\left (19 \, x^{8} - 16 \, x^{5} + x^{2}\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - \sqrt {6} 2^{\frac {1}{3}} {\left (71 \, x^{9} - 111 \, x^{6} + 33 \, x^{3} - 1\right )}\right )}}{6 \, {\left (109 \, x^{9} - 105 \, x^{6} + 3 \, x^{3} + 1\right )}}\right ) - 2 \cdot 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \log \left (\frac {6 \cdot 2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} x^{2} - 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} + 1\right )} + 6 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}} x}{x^{3} + 1}\right ) + 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \log \left (-\frac {3 \cdot 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (5 \, x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} - 2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (19 \, x^{6} - 16 \, x^{3} + 1\right )} + 12 \, {\left (2 \, x^{5} - x^{2}\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}}}{x^{6} + 2 \, x^{3} + 1}\right ) + 36 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}} x}{72 \, {\left (x^{3} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="fricas")

[Out]

-1/72*(2*sqrt(6)*2^(1/6)*(-1)^(1/3)*(x^3 - 1)*arctan(1/6*2^(1/6)*(6*sqrt(6)*2^(2/3)*(-1)^(2/3)*(5*x^7 + 4*x^4
- x)*(-x^3 + 1)^(2/3) - 12*sqrt(6)*(-1)^(1/3)*(19*x^8 - 16*x^5 + x^2)*(-x^3 + 1)^(1/3) - sqrt(6)*2^(1/3)*(71*x
^9 - 111*x^6 + 33*x^3 - 1))/(109*x^9 - 105*x^6 + 3*x^3 + 1)) - 2*2^(2/3)*(-1)^(1/3)*(x^3 - 1)*log((6*2^(1/3)*(
-1)^(2/3)*(-x^3 + 1)^(1/3)*x^2 - 2^(2/3)*(-1)^(1/3)*(x^3 + 1) + 6*(-x^3 + 1)^(2/3)*x)/(x^3 + 1)) + 2^(2/3)*(-1
)^(1/3)*(x^3 - 1)*log(-(3*2^(2/3)*(-1)^(1/3)*(5*x^4 - x)*(-x^3 + 1)^(2/3) - 2^(1/3)*(-1)^(2/3)*(19*x^6 - 16*x^
3 + 1) + 12*(2*x^5 - x^2)*(-x^3 + 1)^(1/3))/(x^6 + 2*x^3 + 1)) + 36*(-x^3 + 1)^(2/3)*x)/(x^3 - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac {4}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(-x**3+1)**(4/3)/(x**3+1),x)

[Out]

Integral(x**3/((-(x - 1)*(x**2 + x + 1))**(4/3)*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="giac")

[Out]

integrate(x^3/((x^3 + 1)*(-x^3 + 1)^(4/3)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3}{{\left (1-x^3\right )}^{4/3}\,\left (x^3+1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((1 - x^3)^(4/3)*(x^3 + 1)),x)

[Out]

int(x^3/((1 - x^3)^(4/3)*(x^3 + 1)), x)

________________________________________________________________________________________